Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38728616

RESUMO

Inverted singlet-triplet gap (INVEST) materials have promising photophysical properties for optoelectronic applications due to an inversion of their lowest singlet (S1) and triplet (T1) excited states. This results in an exothermic reverse intersystem crossing (rISC) process that potentially enhances triplet harvesting, compared to thermally activated delayed fluorescence (TADF) emitters with endothermic rISCs. However, the processes and phenomena that facilitate conversion between excited states for INVEST materials are underexplored. We investigate the complex potential energy surfaces (PESs) of the excited states of three heavily studied azaphenalene INVEST compounds, namely, cyclazine, pentazine, and heptazine using two state-of-the-art computational methodologies, namely, RMS-CASPT2 and SCS-ADC(2) methods. Our findings suggest that ISC and rISC processes take place directly between the S1 and T1 electronic states in all three compounds through a minimum-energy crossing point (MECP) with an activation energy barrier between 0.11 to 0.58 eV above the S1 state for ISC and between 0.06 and 0.36 eV above the T1 state for rISC. We predict that higher-lying triplet states are not populated, since the crossing point structures to these states are not energetically accessible. Furthermore, the conical intersection (CI) between the ground and S1 states is high in energy for all compounds (between 0.4 to 2.0 eV) which makes nonradiative decay back to the ground state a relatively slow process. We demonstrate that the spin-orbit coupling (SOC) driving the S1-T1 conversion is enhanced by vibronic coupling with higher-lying singlet and triplet states possessing vibrational modes of proper symmetry. We also rationalize that the experimentally observed anti-Kasha emission of cyclazine is due to the energetically inaccessible CI between the bright S2 and the dark S1 states, hindering internal conversion. Finally, we show that SCS-ADC(2) is able to qualitatively reproduce excited state features, but consistently overpredict relative energies of excited state structural minima compared to RMS-CASPT2. The identification of these excited state features elaborates design rules for new INVEST emitters with improved emission quantum yields.

2.
Nature ; 620(7974): 538-544, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587296

RESUMO

Molecules present a versatile platform for quantum information science1,2 and are candidates for sensing and computation applications3,4. Robust spin-optical interfaces are key to harnessing the quantum resources of materials5. To date, carbon-based candidates have been non-luminescent6,7, which prevents optical readout via emission. Here we report organic molecules showing both efficient luminescence and near-unity generation yield of excited states with spin multiplicity S > 1. This was achieved by designing an energy resonance between emissive doublet and triplet levels, here on covalently coupled tris(2,4,6-trichlorophenyl) methyl-carbazole radicals and anthracene. We observed that the doublet photoexcitation delocalized onto the linked acene within a few picoseconds and subsequently evolved to a pure high-spin state (quartet for monoradical, quintet for biradical) of mixed radical-triplet character near 1.8 eV. These high-spin states are coherently addressable with microwaves even at 295 K, with optical readout enabled by reverse intersystem crossing to emissive states. Furthermore, for the biradical, on return to the ground state the previously uncorrelated radical spins either side of the anthracene shows strong spin correlation. Our approach simultaneously supports a high efficiency of initialization, spin manipulations and light-based readout at room temperature. The integration of luminescence and high-spin states creates an organic materials platform for emerging quantum technologies.

3.
Adv Mater ; 35(33): e2300997, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37140188

RESUMO

Two multiresonant thermally activated delayed fluorescence (MR-TADF) emitters are presented and it is shown how further borylation of a deep-blue MR-TADF emitter, DIDOBNA-N, both blueshifts and narrows the emission producing a new near-UV MR-TADF emitter, MesB-DIDOBNA-N, are shown. DIDOBNA-N emits bright blue light (ΦPL = 444 nm, FWHM = 64 nm, ΦPL = 81%, τd = 23 ms, 1.5 wt% in TSPO1). The deep-blue organic light-emitting diode (OLED) based on this twisted MR-TADF compound shows a very high maximum external quantum efficiency (EQEmax ) of 15.3% for a device with CIEy of 0.073. The fused planar MR-TADF emitter, MesB-DIDOBNA-N shows efficient and narrowband near-UV emission (λPL = 402 nm, FWHM = 19 nm, ΦPL = 74.7%, τd = 133 ms, 1.5 wt% in TSPO1). The best OLED with MesB-DIDOBNA-N, doped in a co-host, shows the highest efficiency reported for a near-UV OLED at 16.2%. With a CIEy coordinate of 0.049, this device also shows the bluest EL reported for a MR-TADF OLED to date.

4.
Angew Chem Int Ed Engl ; 62(8): e202215522, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36480790

RESUMO

We present a p- and n-doped nonacene compound, NOBNacene, that represents a rare example of a linearly extended ladder-type multiresonant thermally activated delayed fluorescence (MR-TADF) emitter. This compound shows efficient narrow deep blue emission, with a λPL of 410 nm, full width at half maximum, FWHM, of 38 nm, photoluminescence quantum yield, ΦPL of 71 %, and a delayed lifetime, τd of 1.18 ms in 1.5 wt % TSPO1 thin film. The organic light-emitting diode (OLED) using this compound as the emitter shows a comparable electroluminescence spectrum peaked at 409 nm (FWHM=37 nm) and a maximum external quantum efficiency (EQEmax ) of 8.5 % at Commission Internationale de l'Éclairage (CIE) coordinates of (0.173, 0.055). The EQEmax values were increased to 11.2 % at 3 wt % doping of the emitter within the emissive layer of the device. At this concentration, the electroluminescence spectrum broadened slightly, leading to CIE coordinates of (0.176, 0.068).

5.
J Chem Theory Comput ; 18(8): 4903-4918, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35786892

RESUMO

With the surge of interest in multiresonant thermally activated delayed fluorescent (MR-TADF) materials, it is important that there exist computational methods to accurately model their excited states. Here, building on our previous work, we demonstrate how the spin-component scaling second-order approximate coupled-cluster (SCS-CC2), a wavefunction-based method, is robust at predicting the ΔEST (i.e., the energy difference between the lowest singlet S1 and triplet T1 excited states) of a large number of MR-TADF materials, with a mean average deviation (MAD) of 0.04 eV compared to experimental data. Time-dependent density functional theory calculations with the most common DFT functionals as well as the consideration of the Tamm-Dancoff approximation (TDA) consistently predict a much larger ΔEST as a result of a poorer account of Coulomb correlation as compared to SCS-CC2. Very interestingly, the use of a metric to assess the importance of higher order excitations in the SCS-CC2 wavefunctions shows that Coulomb correlation effects are substantially larger in the lowest singlet compared to the corresponding triplet and need to be accounted for a balanced description of the relevant electronic excited states. This is further highlighted with coupled cluster singles-only calculations, which predict very different S1 energies as compared to SCS-CC2 while T1 energies remain similar, leading to very large ΔEST, in complete disagreement with the experiments. We compared our SCS-CC2/cc-pVDZ with other wavefunction approaches, namely, CC2/cc-pVDZ and SOS-CC2/cc-pVDZ leading to similar performances. Using SCS-CC2, we investigate the excited-state properties of MR-TADF emitters showcasing large ΔET2T1 for the majority of emitters, while π-electron extension emerges as the best strategy to minimize ΔEST. We also employed SCS-CC2 to evaluate donor-acceptor systems that contain a MR-TADF moiety acting as the acceptor and show that the broad emission observed for some of these compounds arises from the solvent-promoted stabilization of a higher-lying charge-transfer singlet state (S2). This work highlights the importance of using wavefunction methods in relation to MR-TADF emitter design and associated photophysics.

6.
Nat Commun ; 12(1): 6640, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789719

RESUMO

Engineering a low singlet-triplet energy gap (ΔEST) is necessary for efficient reverse intersystem crossing (rISC) in delayed fluorescence (DF) organic semiconductors but results in a small radiative rate that limits performance in LEDs. Here, we study a model DF material, BF2, that exhibits a strong optical absorption (absorption coefficient = 3.8 × 105 cm-1) and a relatively large ΔEST of 0.2 eV. In isolated BF2 molecules, intramolecular rISC is slow (delayed lifetime = 260 µs), but in aggregated films, BF2 generates intermolecular charge transfer (inter-CT) states on picosecond timescales. In contrast to the microsecond intramolecular rISC that is promoted by spin-orbit interactions in most isolated DF molecules, photoluminescence-detected magnetic resonance shows that these inter-CT states undergo rISC mediated by hyperfine interactions on a ~24 ns timescale and have an average electron-hole separation of ≥1.5 nm. Transfer back to the emissive singlet exciton then enables efficient DF and LED operation. Thus, access to these inter-CT states, which is possible even at low BF2 doping concentrations of 4 wt%, resolves the conflicting requirements of fast radiative emission and low ΔEST in organic DF emitters.

7.
Molecules ; 26(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34299394

RESUMO

In this work, we investigate two recently synthesized naphthodithiophene diimide (NDTI) derivatives featuring promising n-type charge transport properties. We analyze the charge transport pathways and model charge mobility with the non-adiabatic hopping mechanism using the Marcus-Levich-Jortner rate constant formulation, highlighting the role of fluoroalkylated substitution in α (α-NDTI) and at the imide nitrogen (N-NDTI) position. In contrast with the experimental results, similar charge mobilities are computed for the two derivatives. However, while α-NDTI displays remarkably anisotropic mobilities with an almost one-dimensional directionality, N-NDTI sustains a more isotropic charge percolation pattern. We propose that the strong anisotropic charge transport character of α-NDTI is responsible for the modest measured charge mobility. In addition, when the role of thermally induced transfer integral fluctuations is investigated, the computed electron-phonon couplings for intermolecular sliding modes indicate that dynamic disorder effects are also more detrimental for the charge transport of α-NDTI than N-NDTI. The lower observed mobility of α-NDTI is therefore rationalized in terms of a prominent anisotropic character of the charge percolation pathways, with the additional contribution of dynamic disorder effects.

8.
Angew Chem Int Ed Engl ; 60(33): 17910-17914, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34038618

RESUMO

Herein, we reported an ultrapure blue multiple-resonance-induced thermally activated delayed fluorescence (MR-TADF) material (ν-DABNA-O-Me) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted π-conjugation of the HOMO rather than the LUMO induced by oxygen atom incorporation, ν-DABNA-O-Me shows a hypsochromic shift compared to the parent MR-TADF material (ν-DABNA). An organic light-emitting diode based on this material exhibits an emission at 465 nm, with a small full-width at half-maximum of 23 nm and Commission Internationale de l'Eclairage coordinates of (0.13, 0.10), and a high maximum external quantum efficiency of 29.5 %. Moreover, ν-DABNA-O-Me facilitates a drastically improved efficiency roll-off and a device lifetime compared to ν-DABNA, which demonstrates significant potential of the oxygen atom incorporation strategy.

9.
J Chem Phys ; 154(12): 124101, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33810656

RESUMO

To understand the influence of interchromophoric arrangements on photo-induced processes and optical properties of aggregates, it is fundamental to assess the contribution of local excitations [charge transfer (CT) and Frenkel (FE)] to exciton states. Here, we apply a general procedure to analyze the adiabatic exciton states derived from time-dependent density functional theory calculations, in terms of diabatic states chosen to coincide with local excitations within a restricted orbital space. In parallel, motivated by the need of cost-effective approaches to afford the study of larger aggregates, we propose to build a model Hamiltonian based on calculations carried out on dimers composing the aggregate. Both approaches are applied to study excitation energy profiles and CT character modulation induced by interchromophore rearrangements in perylene bisimide aggregates up to a tetramer. The dimer-based approach closely reproduces the results of full-aggregate calculations, and an analysis in terms of symmetry-adapted diabatic states discloses the effects of CT/FE interactions on the interchange of the H-/J-character for small longitudinal shifts of the chromophores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...